Звуковые параметры. Основные характеристики звука. Распространение звуковых волн, фаза и противофаза

Звуковые параметры. Основные характеристики звука. Распространение звуковых волн, фаза и противофаза

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СВЯЗИ, ИНФОРМАТИЗАЦИИ И ТЕЛЕКОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ РЕСПУБЛИКИ УЗБЕКИСТАН

ТАШКЕНТСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

ФАКУЛЬТЕТ ТЕЛЕВИЗИОННЫХ ТЕХНОЛОГИЙ

по предмету: Основы физики

на тему: Физические параметры звука

Подготовил:

Шишков Дмитрий

Ташкент, 2015 год

Введение

2.1 Скорость звука

3. Эффект Доплера

4. Ультразвук

5. Инфразвук

Заключение

Введение

Мы живем в мире информации, и главная ее часть проходит через глаза и слух человека. Согласно исследованиям физиологов визуальная информация занимает первое место, но и слуховая не менее важна.

Мы живем в мире звуков, это и музыка и шумы разной природы, и речь, и музыка. Поэтому надо знать природу звука, уравнения и законы, которые описывают его распространения и поглощения в различных средах. Это необходимо знать людям различных профессий: музыкантам и строителям, звукорежиссерам и архитекторам, биологам и геологам, сейсмологам, военным. Все они имеют дело с различными сторонами практического распространения звука в разных средах.

Распространение звука в помещениях, „звучание” помещений важно для строителей, музыкантов. За звуковыми сигналами сейчас исследуют пути миграций перелетных птиц биологи, находят косяки рыб в океане рыбаки. Геологи с помощью ультразвука исследуют земную кору в поисках новых месторождений полезных ископаемых. Сейсмологи, изучая распространение звуков в земле, учатся предсказывать землетрясения и цунами. Для военных большое значение имеет профиль корпусов военных кораблей и подводных лодок, ведь это влияет на скорость движения корабля и на издаваемый им шум, который для подводных лодок должен быть минимальным, всем этим и обусловлена актуальность моей работы. Развитие физики и математики сделало возможным рассчитать все это. Поэтому звуковые явления были выделены в отдельную науку, которая получила название акустики.

Целью моей работы является рассмотрение основных законов и правил распространения звука в различных средах, виды звуковых колебаний и их применение в науке и технике.

1. Природа звука и ультразвуковой волны

Сначала рассмотрим природу звуковых колебаний. Как известно из физики источником любых колебаний: звуковых, электромагнитных есть волна. Упругие волны, которые распространяются в сплошных средах, называют звуковыми.

К звуковым волнам принадлежат волны, частоты которых лежит в пределах восприятия органами слуха. Человек воспринимает звуки тогда, когда на его органы слуха действуют волны с частотами от 16 до 20 000 Гц. Упругие волны, частота которых меньше 16 Гц, называют инфразвуковыми, а волны, частота которых лежит в интервале от 2 Ч 104 до 1 Ч 109 Гц - ультразвуковыми.

Раздел физики, в котором изучаются звуковые волны (их возбуждение, распространение, восприятие и взаимодействие их с препятствиями и веществом среды) называют акустикой.

Любой колебательный процесс описывается уравнением. Выведено оно и для звуковых колебаний:

Развитие техники позволило проводить и визуальное наблюдение звука. Для этого используют специальные датчики и микрофоны и наблюдают звуковые колебания на экране осциллографа.

2. Основные характеристики звуковых волн

2.1 Скорость звука

К основным характеристикам звуковых волн относят скорость звука, его интенсивность - это объективные характеристики звуковых волн, высоту тона, громкость относят к субъективным характеристикам. Субъективные характеристики зависят в большой мере от восприятия звука конкретным человеком, а не от физических характеристик звука.

Измерение скорости звука в твердых телах, жидкостях и газах указывают на то, что скорость не зависит от частоты колебаний или длины звуковой волны, т. е., для звуковых волн не характерна дисперсия. В твердых телах могут распространяться продольные и поперечные волны, скорость распространения которых находят с помощью формул:

где Е - модуль Юнга, G - модуль сдвига в твердых телах. В твердых телах скорость распространения продольных волн почти в два раза больше чем скорость распространения поперечных волн.

В жидкостях и газах могут распространяться лишь продольные волны. Скорость звука в воде находят за формулой:

K - модуль объемного сжатия вещества.

В жидкостях при возрастании температуры скорость звука возрастает, что связано с уменьшением коэффициента объемного сжатия жидкости.

Для газов выведена формула, которая связывает их давление с плотностью:

Впервые эту формулу для нахождения скорости звука в газах использовал И. Ньютон. Из формулы видно, что скорость распространения звука в газах не зависит от температуры, она также не зависит от давления, поскольку при возрастании давления возрастает и плотность газа. Формуле можно придать и более рациональный вид: на основе уравнения Менделеева-Клапейрона:

Тогда скорость звука будет равна:

Формула носит название формулы Ньютона. Рассчитанная с ее помощью скорость звука в воздухе составляет при 273К 280 м/с. Реальная же экспериментальная скорость составляет 330 м/с.

Этот результат значительно отличается от теоретического и причину этого установил Лаплас.

Он показал, что распространение звука в воздухе происходит адиабатно. Звуковые волны в газах распространяются так быстро, что, что созданные локальные изменения объема и давления в газовой среде происходят без теплообмена с окружающей средой. Лаплас вывел уравнение для нахождения скорости звука в газах:

2.2 Распространение звуковых волн

В процессе распространения звуковых волн в среде происходит их затухание. Амплитуда колебаний частиц среды постепенно уменьшается при возрастании расстояния от источника звука.

Одной из основных причин затухания волн есть действие сил внутреннего трения на частицы среды. На преодоление этих сил непрерывно используется механическая энергия колебательного движения, что переносится волной. Эта энергия превращается в энергию хаотического теплового движения молекул и атомов среды. Поскольку энергия волны пропорциональна квадрату амплитуды колебаний, то прираспространении волн от источника звука вместе с уменьшением запаса энергии колебательного движения уменьшается и амплитуда колебаний.

На распространение звуков в атмосфере влияет много факторов: температура на разных высотам, потоки воздуха. Эхо - это отраженный от поверхности звук. Звуковые волны могут отражаться от твердых поверхностей, от слоев воздуха в которых температура отличается от температуры соседних слоев.

3. Эффект Доплера

Для сравнения интенсивности L звука или звукового давления используют уровень интенсивности. Уровнем интенсивности называют умноженный на 10 логарифм отношений двух интенсивностей звука. Величина L измеряется в децибелах:

Для указания абсолютного уровня интенсивности вводят стандартный порог слышимости І0 человеческого уха на частоте 1000 Гц, по отношению к которому указывается интенсивность. Порог слышимости равен:

В таблице представлены интенсивности различных природных и техногенных звуков и их интенсивности.

Объективные характеристики звука. Любое тело, которое находится в упругой среде и колеблеться со звуковой частотой, является источником звука. Источника звука можно поделить на две группы: источники, которые работают на собственной частоте, и источники, которые работают на вынужденных частотах. К первой группе принадлежат источники, звуки в которых создаются колебаниями струн, камертонов, воздушных столбов в трубах. Ко второй группе источников звука принадлежат телефоны. Способность тел излучать звук зависит от размера их поверхности. Чем большая площадь поверхности тела, тем лучше оно излучает звук. Так, натянутая между двумя точками струна или камертон создают звук довольно малой интенсивности. Для усиления интенсивности звука струн и камертонов их объединяют с резонаторными ящиками, которым присущий ряд резонансных частот. Звучание струнных и духовых музыкальных инструментов основано на образовании стоящих волн в струнах и воздушных столбах. Интенсивность звука, который создается источником, зависит не только от его характеристик, а и от помещения, в котором находится этот источник. После прекращения действия источника звука рассеянный звук не исчезает внезапно. Это объясняется отбиванием звуковых волн от стен помещения. Время, на протяжении которого после прекращения действия источника звук полностью исчезает, называют временами реверберации. Условно считают, что время реверберации равняется промежутку времени, на протяжении которого интенсивность звука уменьшится в миллион раз.

Время реверберации - это важная характеристика акустических свойств концертных залов, кинозалов, аудиторий и др. При большом времени реверберации музыка звучат довольно громко, но невыразительно. При малом времени реверберации музыка звучат слабо и глухо. Поэтому в каждом конкретном случае добиваются наиболее оптимальных акустических характеристик помещений.

Субъективные характеристики звука. Человек ощущает звуки, которые лежат в диапазоне частот от 16 Гц до 20 кГц. Чувствительность органов слуха человека до разных частот неодинаковая. Для того, чтобы человек реагировал на звук, необходимо, чтобы его интенсивность была не меньше минимальной величины, которая носит название порога слышимости. Порог слышимости для разных частот неодинаковый. Людское ухо имеет наибольшую чувствительность к колебаниям частотой от 1 до 3 кГц. Порог слышимости для этих частот составляет около Дж/м. кв. с. При значительном возрастании интенсивности звука ухо перестает воспринимать колебания как звук. Такие колебания вызывают ощущение боли.

Наибольшую интенсивность звука, при которой человек воспринимает колебания как звук, называют порогом болевого ощущения.

Порог болевых ощущений при указанных частотах отвечает интенсивности звука 1 Дж/м. кв. с.

Звук как физическое явление характеризируют частотой, интенсивностью или звуковым давлением, набором частот. Это объективные характеристики звука. Органы слуха человека воспринимают звукза громкостью, высотой тона, тембром. Эти характеристики имеют субъективный характер.

Диаграмма на которой представлены области частот и интенсивности, воспринимаемые человеческим ухом, называют диаграммой слуха. Физическому понятию интенсивности звука отвечает громкость звука. Субъективную громкость звука нельзя точно количественно измерить.

Высота звука определяется его частотой, чем больше частота, тем большим будет высота звука. Органы слуха человека довольно точно ощущают изменение частоты. В области частот 2 кГц может воспринимать два тона, частота которых отличается на 3-6 Гц. Тембр звука определяется его спектральных составом. Тембр - это оттенок сложного звука, которым отличаются два звука одинаковой силы и высоты.

4. Ультразвук

Как уже отмечалось, упругие волны, частоты которых лежат в интервале от 104 до 109 Гц, называют ультразвуком. Весь диапазон частот ультра звуковых волн условно разделяют на три поддиапазона: ультразвуковые волны низких (104-105 Гц), средних (105-107 Гц) и высоких частот (107-109 Гц). За физической природой ультразвуковые волны такие, как и звуковые волны любой длинны. Тем не менее, вследствие более высоких частот ультразвук имеет ряд специфических особенностей при его распространении. В связи с тем, что длины ультразвуковых волн довольно малые, характер их распространения определяется в первую очередь молекулярными свойствами вещества.

Характерная особенность распространения ультразвука в многоатомных газах и в жидкостях - это существование интервалов длин волн, в пределах которых проявляется зависимость фазовой скорости распространения волн от их частоты, т. е., имеет место дисперсия звука. В этих интервалах длинны волн также происходит значительное поглощение ультразвука. Поэтому при распространении его в воздухе происходит более значительное его затухание, чем звуковых волн. В жидкостях и твердых телах (особенно монокристалах) затухание ультразвука значительно меньше. Поэтому область применения ультразвука средних и высоких частот лежит в основном в жидких и твердых средах, а в воздухе и в газах применяют только ультразвук низких частот.

Еще одна особенность ультразвука - это возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, поскольку при определенной амплитуде плотность потока энергии пропорциональная квадрату частоты.

До важных явлений, которые возникают в жидкостях при прохождении ультразвука, принадлежит кавитация.

Это получение кратковременных импульсов давления при схлопывании пузырьков воздуха.

Для получения ультра звуковых волн используют механические и электромеханические приборы. К механическим можно отнести воздушные и жидкостные сирены и свистки. Многие вещества могут генерировать ультразвук при помещении их в высокочастотное электрическое поле, к таким веществам относят кварц, сегнетовую соль, титанат бария. Ультразвук используют во многих областях знаний, науке и технике. Его используют для изучения свойств и строения вещества. С его помощью получают информацию о строении морского дна, его глубине, находят косяки рыб в океане. Ультра звуковые волны могут проникать через металлические изделия толщиной около 10 метров. Это их свойство положено в основу принципа работы ультра звукового дефектоскопа, который помогает находить дефекты и трещины в твердых телах. В медицине это свойство ультразвука положено в основу работы приборов ультразвуковой диагностики, которые позволяют визуализировать внутренние органы, диагностировать болезни на ранних стадиях.

Действие ультразвуковых колебаний непосредственно на расплавы дает возможность получить более однородную структуру металлов. Ультразвуковая кавитация применяется для очищения от грязи поверхностей деталей (часовое производство, приборостроение, электронная техника и др.). На основе кавитации осуществляется металлизация тел и пайка, дегазация жидкостей. Кавитационные ударные волны могут диспергировать твердые тела и жидкости, образовывая эмульсии и суспензии.

5. Инфразвук

Инфразвуки - это упругие колебания, аналогичные звуковым колебанием, но с частотами ниже 20 Гц. Инфразвуки на первый взгляд занимают небольшой диапазон частот от 20 до 0 Гц. На самом деле этот участок чрезвычайно большой, поскольку «к нулю» означает практически бесконечный диапазон колебаний. Этот диапазон менее изучен сравнительно со звуковым и ультразвуковым диапазонами. Инфразвуковые волны возникают вследствие обдувания ветром зданий, деревьев, телеграфных столбов, металлических ферм, во время движения человека, животные, транспорта, при работе разных механизмов, при грозовых разрядах, взрывах бомб, выстрелах пушек. В земной коре наблюдаются колебание и вибрации инфразвуковых частот вследствие обвалов, движения разных видов транспорта, вулканических извержений и т. п.

Другими словами, мы живем в мире инфразвуков, не подозревая об этом. Такие звуки человек скорее ощущает, чем чует. Зарегистрировать инфразвуки можно только особыми приборами. Характерной особенностью инфразвука есть незначительное его поглощения в разных средах. Вследствие этого инфразвуковые волны в воздухе, воде и земной коре могут распространяться на довольно большие расстояния (десятки тысяч километров). В связи с этим инфразвук образно называют «акустическим нейтрино». Так, инфразвуковые волны (частота колебаний 0,1 Гц), что образовались при извержении вулкана Кракатау (Индонезия) в 1883 г., несколько раз обошли вокруг земного шара. Они вызвали такие флюктуации давления, которые можно было зарегистрировать обычными барометрами.

Некоторые инфразвуки человек воспринимает, но не органами слуха, а организмом в целом. Дело в том, что некоторые внутренние органы человека имеют собственную резонансную частоту колебаний 6-8 Гц. При действии инфразвука этой частоты возможное возникновение резонанса колебаний этих органов, который вызывает неприятные ощущения.

Исследованиями ученых разные страны установлены, что инфразвук любых частот и интенсивности представляет собой реальную угрозу для здоровья человека. Полученные результаты дают возможность сделать вывод, что инфразвук приводит к потере чувствительности органов равновесия тела, которое в свою очередь приводит к появлению боли в ушах, позвоночнике и повреждений мозга. Еще более пагубно влияет инфразвук на психику человека. Свойство ультразвуковых колебаний распространяться на большие расстояния в земной коре лежит в основе сейсмологии - науки, которая изучает землетрясения и исследует внутреннее строение Земли.

Кроме океанологии и сейсмологии, инфразвук применяют в работе некоторых приборов и механизмов для разных практических целей. С помощью таких приборов стараются предусмотреть землетрясения, приближение цунами.

Заключение

физический механический ультразвук

Человек живет в океане звука, он обменивается информацией с помощью звука, воспринимает ее от окружающих его людей. Поэтому знать основные характеристики звука, его подвиды и их использование просто необходимо. Использование звуковых и ультра звуковых волн находит все большее применение в жизни человека. Их используют в медицине и технике, на их использовании основаны многие приборы, особенно для исследования морей и океанов. Где из-за сильного поглощения радиоволн звуковые и ультра звуковые колебания есть единственным способ передачи информации. Как было сказано выше человек живет в океане звука и нам также не нужно забывать и о чистоте этого океана. Сильные шумы опасны для здоровья человека и могут привести к сильным головным болям, расстройству координации движения. Поэтому нужно с уважением относится к столь сложному и интересному явлению, каким есть звук.

Список использованной литературы

1. Дущенко В.П., Кучерук И.М. Общая физика. - К.: Высшая школа, 1995. - 430 с.

2. Исакович М.А.Общая акустика. - М.: Наука, 1973. - 495 с.

3. Зисман Г.А., Тодес О. М. Курс общей физики. В 3 т. - М.: Наука, 1995. - 343 с.

4. Клюкин И.И. Удивительный мир звука. - Л.: Судостроение, 1978. - 166 с.

5. Кухлинг Х. Справочник по физике: Пер. с нем. - М.: Мир, 1983. - 520 с.

6. Лепендин Л.Ф. Акустика. - М.: Высшая школа, 1978. - 448 с.

7. Яворский Б.М., Детлаф А.А. Справочник по физике. - М.: Наука, 1982. - 846 с.

8. Шебалин О.Д. Физические основы механики и акустики. - М.: Высшая школа, 1981. - 263 с.

Размещено на Allbest.ru

...

Подобные документы

    Звуковые волны и природа звука. Основные характеристики звуковых волн: скорость, распространение, интенсивность. Характеристика звука и звуковые ощущения. Ультразвук и его использование в технике и природе. Природа инфразвуковых колебаний, их применение.

    реферат , добавлен 04.06.2010

    Природа звука, физические характеристики и основы звуковых методов исследования в клинике. Частный случай механических колебаний и волн. Звуковой удар и кратковременное звуковое воздействие. Звуковые измерения: ультразвук, инфразвук, вибрация и ощущения.

    реферат , добавлен 09.11.2011

    Что такое звук. Распространение механических колебаний среды в пространстве. Высота и тембр звука. Сжатие и разрежение воздуха. Распространение звука, звуковые волны. Отражение звука, эхо. Восприимчивость человека к звукам. Влияние звуков на человека.

    реферат , добавлен 13.05.2015

    Распространение звуковых волн в атмосфере. Зависимость скорости звука от температуры и влажности. Восприятие звуковых волн ухом человека, частота и сила звука. Влияние ветра на скорость звука. Особенность инфразвуков, ослабление звука в атмосфере.

    лекция , добавлен 19.11.2010

    Колебания частиц в упругих средах, распространяющиеся в форме продольных волн, частота которых лежит в пределах, воспринимаемых ухом. Объективные, субъективные характеристики звука. Звуковые методы исследования в клинике. Положение пальцев при перкуссии.

    презентация , добавлен 28.05.2013

    Параметры упругих гармонических волн. Уравнения плоской и сферической волн. Уравнение стоячей волны. Распространение волн в однородной изотропной среде и принцип суперпозиции. Интервалы между соседними пучностями. Скорость распространения звука.

    презентация , добавлен 18.04.2013

    Типы волн и их отличительные особенности. Понятие и исследование параметров упругих волн: уравнения плоской и сферической волн, эффект Доплера. Сущность и характеристика стоячих волн. Явление и условия наложения волн. Описание звуковых и стоячих волн.

    презентация , добавлен 24.09.2013

    Изучение механизма работы человеческого уха. Определение понятия и физических параметров звука. Распространение звуковых волн в воздушной среде. Формула расчета скорости звука. Рассмотрение числа Маха как характеристики безразмерной скорости течения газа.

    реферат , добавлен 18.04.2012

    Звук как источник информации. Причина и источники звука. Амплитуда колебаний в звуковой волне. Необходимые условия распространения звуковых волн. Длительность звучания камертона на резонаторе и без него. Использование в технике эхолокации и ультразвука.

    презентация , добавлен 15.02.2011

    Природа звука и его источники. Основы генерации компьютерного звука. Устройства ввода-вывода звуковых сигналов. Интенсивность звука как энергетическая характеристика звуковых колебаний. Распределение скорости звука. Затухающие звуковые колебания.

Лабораторная работа №5

Аудиометрия

Студент должен знать : что называется звуком, природу звука, источники звука; физические характеристики звука (частота, амплитуда, скорость, интенсивность, уровень интенсивности, давление, акустический спектр); физиологические характеристики звука (высота, громкость, тембр, минимальная и максимальная частоты колебаний, воспринимаемые данным человеком, порог слышимости, порог болевого ощущения) их связь с физическими характеристиками звука; слуховой аппарат человека, теории восприятия звука; коэффициент звукоизоляции; акустический импеданс, поглощение и отражение звука, коэффициенты отражения и проникновения звуковых волн, реверберация; физические основы звуковых методов исследования в клинике, понятие об аудиометрии.

Студент должен уметь: с помощью звукового генератора снимать зависимость порога слышимости от частоты; определять минимальную и максимальную, воспринимаемые Вами частоты колебаний, снимать аудиограмму с помощью аудиометра.

Краткая теория

Звук. Физические характеристики звука

Звуком называются механические волны с частотой колебаний частиц упругой среды от 20 Гц до 20000 Гц, воспринимаемые человеческим ухом.



Физическими называют те характеристики звука, которые существуют объективно. Они не связаны с особенностями ощущения человеком звуковых колебаний. К физическим характеристикам звука относятся частота, амплитуда колебаний, интенсивность, уровень интенсивности, скорость распространения звуковых колебаний, звуковое давление, акустический спектр звука, коэффициенты отражения и проникновения звуковых колебаний и др. Кратко рассмотрим их.

1. Частота колебаний . Частотой звуковых колебаний называется число колебаний частиц упругой среды (в которой распространяются звуковые колебания) в единицу времени. Частота звуковых колебаний лежит в пределах 20 - 20000 Гц. Каждый конкретный человек воспринимает определенный диапазон частот (обычно несколько выше 20 Гц и ниже 20000 Гц).

2. Амплитудой звукового колебания называется наибольшее отклонение колеблющихся частиц среды (в которой распространяется звуковое колебание) от положения равновесия.

3. Интенсивностью звуковой волны (или силой звука ) называется физическая величина, численно равная отношению энергии, переносимой звуковой волной в единицу времени через единицу площади поверхности, ориентированной перпендикулярно вектору скорости звуковой волны, то есть:

где W - энергия волны, t - время переноса энергии через площадку площадью S .

Единица интенсивности: [I ] = 1Дж/(м 2 с) = 1Вт/м 2 .

Обратим внимание на то, что энергия и соответственно интенсивность звуковой волны прямо пропорциональны квадрату амплитуды «А » и частоты «ω » звуковых колебаний:

W ~ A 2 и I ~ A 2 ; W ~ ω 2 и I ~ ω 2 .

4. Скоростью звука называется скорость распространения энергии звукового колебания. Для плоской гармонической волны фазовая скорость (скорость распространения фазы колебания (фронта волны), например, максимума или минимума, т.е. сгустка или разряжения среды) равна скорости волны. Для сложного колебания (по теореме Фурье можно представить в виде суммы гармонических колебаний) вводится понятие групповой скорости – скорость распространения группы волн, с которой переносится энергия данной волной.

Скорость звука в любой среде можно найти по формуле:

где Е - модуль упругости среды (модуль Юнга), r - плотность среды.

С увеличением плотности среды (например, в 2 раза) модуль упругости Е возрастает в большей степени (более чем в 2 раза), поэтому с увеличением плотности среды скорость звука возрастает. Например, скорость звука в воде равна ≈ 1500 м/с, в стали - 8000 м/с.

Для газов формулу (2) можно преобразовать и получить в следующем виде:

(3)

где g = С Р / С V - отношение молярных или удельных теплоемкостей газа при постоянном давлении (С Р ) и при постоянном объеме (С V ).

R - универсальная газовая постоянная (R=8,31 Дж/моль·К );

Т - абсолютная температура по шкале Кельвина (T=t o C+273 );

М - молярная масса газа (для нормальной смеси газов воздуха

М=29×10 -3 кг/моль ).

Для воздуха при Т=273К и нормальном атмосферном давлении скорость звука равна υ=331,5 » 332 м/с . Следует заметить, что интенсивность волны (векторная величина) часто выражают через скорость волны :

или ,(4)

где S× l - объем, u=W/ S× l - объемная плотность энергии. Вектор в уравнении (4) называют вектором Умова .

5. Звуковым давлением называется физическая величина, численно равная отношению модуля силы давления F колеблющихся частиц среды, в которой распространяется звук, к площади S перпендикулярно ориентированной площадки по отношению к вектору силы давления.

P = F/S [P ]= 1Н/м 2 = 1Па (5)

Интенсивность звуковой волны прямо пропорциональна квадрату звукового давления:

I = Р 2 /(2r υ) , (7)

где Р - звуковое давление, r - плотность среды, υ - скорость звука в данной среде.

6.Уровень интенсивности . Уровнем интенсивности (уровнем силы звука) называется физическая величина, численно равная:

L=lg(I/I 0) , (8)

где I - интенсивность звука, I 0 =10 -12 Вт/м 2 - наименьшая интенсивность, воспринимаемая человеческим ухом на частоте 1000 Гц.

Уровень интенсивности L , исходя из формулы (8), измеряют в белах (Б). L = 1 Б , если I=10I 0 .

Максимальная интенсивность, воспринимаемая человеческим ухом I max =10 Вт/м 2 , т.е. I max / I 0 =10 13 или L max =13 Б.

Чаще уровень интенсивности измеряют в децибелах (дБ ):

L дБ =10 lg(I/I 0) , L=1 дБ при I=1,26I 0 .

Уровень силы звука можно находить через звуковое давление.

Так как I ~ Р 2 , то L(дБ) = 10lg(I/I 0) = 10 lg(P/P 0) 2 = 20 lg(P/P 0) , где P 0 = 2×10 -5 Па (при I 0 =10 -12 Вт/м 2).

7.Тоном называется звук, являющийся периодическим процессом (периодические колебания источника звука совершаются не обязательно по гармоническому закону). Если источник звука совершает гармоническое колебание x=ASinωt , то такой звук называют простым или чистым тоном. Негармоническому периодическому колебанию соответствует сложный тон, который можно по теореме Фурье представить в виде совокупности простых тонов с частотами n о (основной тон) и 2n о , 3n о и т.д., называемых обертонами с соответствующими амплитудами.

8.Акустическим спектром звука называется совокупность гармонических колебаний с соответствующими частотами и амплитудами колебаний, на которые можно разложить данный сложный тон. Спектр сложного тона линейчатый, т.е. частоты n о, 2n о и т.д.

9. Шумом (звуковым шумом) называют звук, который представляет собой сложные, неповторяющиеся во времени колебания частиц упругой среды. Шум представляет собой сочетание беспорядочно изменяющихся сложных тонов. Акустический спектр шума состоит практически из любых частот звукового диапазона, т.е. акустический спектр шума - сплошной.

Звук может быть и в виде звукового удара. Звуковой удар - это кратковременное (обычно интенсивное) звуковое воздействие (хлопок, взрыв и т.п.).

10.Коэффициенты проникновения и отражения звуковой волны. Важной характеристикой среды, определяющей отражение и проникновение звука является волновое сопротивление (акустический импеданс) Z=r υ , где r - плотность среды, υ - скорость звука в среде.

Если плоская волна падает, например, нормально к границе раздела двух сред, то звук частично проходит во вторую среду, а часть звука отражается. Если падает звук интенсивностью I 1 , проходит - I 2 , отражается I 3 =I 1 - I 2 , то:

1) коэффициентом проникновения звуковой волны b называется b=I 2 /I 1 ;

2) коэффициентом отражения a называется:

a= I 3 /I 1 =(I 1 -I 2)/I 1 =1-I 2 /I 1 =1-b.

Релей показал, что b =

Если υ 1 r 1 = υ 2 r 2 , то b=1 (максимальное значение), при этом a=0 , т.е. отраженная волна отсутствует.

Если Z 2 >>Z 1 или υ 2 r 2 >> υ 1 r 1 , то b » 4 υ 1 r 1 / υ 2 r 2 . Так, например, если звук падает из воздуха в воду, то b=4(440/1440000)=0,00122 или 0,122% интенсивности падающего звука проникает из воздуха в воду.

11. Понятие о реверберации . Что представляет собой реверберация? В закрытом помещении звук многократно отражается от потолка, стен, пола и т. п. с постепенно уменьшающейся интенсивностью. Поэтому после прекращения действия источника звука в течение некоторого времени слышен звук за счет многократного отражения (гул).

Реверберацией называется процесс постепенного затухания звука в закрытых помещениях после прекращения излучения источником звуковых волн. Временем реверберации называется время, в течение которого интенсивность звука при реверберации снижается в 10 6 раз. При проектировании учебных аудиторий, концертных залов и т.п. учитывают необходимость получения определенного времени (интервала времени) реверберации. Так, например, для Колонного зала Дома Союзов и Большого театра г. Москвы время реверберации для пустых помещений соответственно равно 4,55 с и 2,05 с, для заполненных – 1,70 с и 1,55 с.

Основные физические характеристики звука - частота и интенсивность колебаний. Они и влияют на слуховое восприятие людей.

Периодом колебания называется время, в течение которого совершается одно полное колебание. Можно привести в пример качающийся маятник, когда он из крайнего левого положения перемещается в крайнее правое и возвращается обратно в исходное положение.

Частота колебаний - это число полных колебаний(периодов)за одну секунду. Эту единицу называют герцем (Гц). Чем больше частота колебаний, тем более высокий звук мы слышим, то есть звук имеет более высокий тон. В соответствии с принятой международной системой единиц, 1000 Гц называется килогерцем (кГц), а 1.000.000 - мегагерцем (МГц).

Распределение по частотам: слышимые звуки - в пределах 15Гц-20кГц, инфразвуки - ниже 15Гц; ультразвуки - в пределах 1,5104 - 109 Гц; гиперзвуки - в пределах 109 - 1013Гц.

Ухо человека наиболее чувствительно к звукам с частотой от 2000 до 5000 кГц. Наибольшая острота слуха наблюдается в возраст 15-20 лет. С возрастом слух ухудшается.

С периодом и частотой колебаний связано понятие о длине волны. Длиной звуковой волны называется расстояние между двумя последовательными сгущениями или разрежениями среды. На примере волн, распространяющихся на поверхности воды, - это расстояние между двумя гребнями.

Звуки различаются также по тембру. Основной тон звука сопровождается второстепенными тонами, которые всегда выше по частоте(обертона). Тембр - это качественная характеристика звука. Чем больше обертонов накладывается на основной тон, тем «сочнее» звук в музыкальном отношении.

Вторая основная характеристика - амплитуда колебаний. Это наибольшее отклонение от положения равновесия при гармонических колебаниях. На примере с маятником - максимальное отклонение его в крайнее левое положение, либо в крайнее правое положение. Амплитуда колебаний определяет интенсивность(силу) звука.

Сила звука, или его интенсивность, определяется количеством акустической энергии, протекающей за одну секунду через площадь в один квадратный сантиметр. Следовательно, интенсивность акустических волн зависит от величины акустического давления, создаваемого источником в среде.

С интенсивностью звука в свою очередь связана громкость. Чем больше интенсивность звука, тем он громче. Однако эти понятия не равнозначны. Громкость - это мера силы слухового ощущения, вызываемого звуком. Звук одинаковой интенсивности может создавать у различных людей неодинаковое по своей громкости слуховое восприятие. Каждый человек обладает своим порогом слышимости.

Звуки очень большой интенсивности человек перестаёт слышать и воспринимает их как ощущение давления и даже боли. Такую силу звука называют порогом болевого ощущения.


53. Путь звуковой волны. Звукопроведение. Звуковосприятие.

Функция звукопроведения состоит в передаче звуковых колебаний составными элементами наружного, среднего и внутреннего уха слуховым рецепторам.

В звукопроведении принимают участие ушная раковина, наружный слуховой проход, барабанная перепонка, слуховые косточки, кольцевая связка овального окна, вторичная барабанная перепонка, перилимфа, основная мембрана.

При раздражении волосковых клеток кортиева органа происходит превращение физической энергии звуковых колебаний в физиологический процесс нервного возбуждения. Это начало процесса слухового восприятия.

Область слухового восприятия 16-20000 Гц.

54. Область звукового восприятия. Чувствительность органа слуха.

ОБЛАСТЬ СЛУХОВОГО ВОСПРИЯТИЯ

16 – 20 000 Гц

Звуки с частотой ниже 16 Гц – инфразвуки

Звуки с частотой выше 20 000 Гц – ультразвуки

Периферический отдел слухового анализатора производит первичный анализ и преобразует физическую энергию звука в электрическую энергию нервного импульса. Проводящие пути передают импульс в мозговые центры. В коре головного мозга происходит превращение энергии нервного возбуждения в ощущение. Кора играет ведущую роль в работе слухового анализатора.

Ухо человека наиболее чувствительно к звукам от 500 до 4000 Гц – это речевой диапазон частот, (1000-3000 Гц).

Минимальная сила звука, способная вызвать ощущение едва слышимого звука – порог слышимости.

Чем ниже порог слышимости, тем выше чувствительность уха к данному звуку. При нормальном слухе величина порога слухового ощущения 0 дБ. При увеличении силы звука ощущение громкости звука усиливается, но при достижении определенной величины нарастание громкости прекращается и появляется ощущение боли – болевой порог. Расстояние между порогом слышимости и порогом неприятных ощущений в области средних частот – 130 дБ.

· Разностным порогом частоты называют минимальный прирост частоты звука к его первоначальной частоте – 3 Гц.

· Разностным порогом силы звука называют минимальный прирост силы звука, дающий усиление первоначальной громкости – 1 дБ.

Таким образом, область слухового восприятия у человека ограничена по высоте и силе звука.

55. Теории звукового восприятия.

Восприятие звуков различной высоты (частоты), согласно резонансной теории Гельмгольца,

обусловлено тем, что каждое волокно основной мембраны настроено на звук определенной частоты.

Так, звуки низкой частоты воспринимаются длинными волнами основной мембраны, расположенными

ближе к верхушке улитки, звуки высокой частоты воспринимаются короткими волокнами основной

мембраны, расположенными ближе к основанию улитки. При действии сложного звука возникают

колебания различных волокон мембраны.

В современной интерпретации резонансный механизм лежит в основе теории места, в соответствии

с которой в состояние колебания вступает вся мембрана. Однако максимальное отклонение основной

мембраны улитки происходит только в определенном месте. При увеличении частоты звуковых

колебаний максимальное отклонение основной мембраны смещается к основанию улитки, где

располагаются более короткие волокна основной мембраны, – у коротких волокон возможна более

высокая частота колебаний. Возбуждение волосковых клеток именно этого участка мембраны при

посредстве медиатора передается на волокна слухового нерва в виде определенного числа импульсов,

частота следования которых ниже частоты звуковых волн (лабильность нервных волокон не превышает

800 – 1000 Гц). Частота воспринимаемых звуковых волн достигает 20 000 Гц. Таким способом

осуществляется пространственный тип кодирования высоты и частоты звуковых сигналов.

При действии тонов примерно до 800 Гц кроме пространственного кодирования происходит еще и

временное (частотное) кодирование, при котором информация передается также по определенным

волокнам слухового нерва, но в виде импульсов (залпов), частота следования которых повторяет

частоту звуковых колебаний. Отдельные нейроны на разных уровнях слуховой сенсорной системы

настроены на определенную частоту звука, т.е. каждый нейрон имеет свой специфический частотный

порог, свою определенную частоту звука, на которую реакция нейрона максимальна. Таким образом,

каждый нейрон из всей совокупности звуков воспринимает лишь определенные достаточно узкие

участки частотного диапазона, не совпадающие между собой, а совокупности нейронов воспринимают

весь частотный диапазон слышимых звуков, что и обеспечивает полноценное слуховое восприятие.

Правомерность этого положения подтверждается результатами протезирования слуха человека, когда

электроды вживлялись в слуховой нерв, а его волокна раздражались электрическими импульсами

разных частот, которые соответствовали звукосочетаниям определенных слов и фраз, обеспечивая

смысловое восприятие речи.

Первая теория была создана британским физиком Резерфордом в 1886 году. Он предположил, что: а) звуковая волна заставляет вибрировать всю базилярную мембрану и частота вибраций соответствует частоте звука; б) частота вибраций мембраны задает частоту нервных импульсов, передаваемых по слуховому нерву. Так, тон частотой 1000 герц заставляет базилярную мембрану вибрировать 1000 раз в секунду, в результате чего волокна слухового нерва разряжаются с частотой 1000 импульсов в секунду, а мозг интерпретирует это как определенную высоту. Поскольку в этой теории предполагается, что высота зависит от изменений звука во времени, ее назвали временной теорией (ее называют также частотной теорией).

Гипотеза Резерфорда вскоре встретилась с серьезными проблемами. Было доказано, что нервные волокна могут передавать не более 1000 импульсов в секунду, и тогда неясно, как человек воспринимает высоту тона с частотой более 1000 герц. Вивер (Weaver, 1949) предложил способ спасения временной теории. Он предположил, что частоты выше 1000 герц кодируются различными группами нервных волокон, каждая из которых активируется в несколько разном темпе. Если, например, одна группа нейронов выдает 1000 импульсов в секунду, а затем 1 миллисекунду спустя другая группа нейронов начинает выдавать 1000 импульсов в секунду, то комбинация импульсов этих двух групп даст 2000 импульсов в секунду. Эту версию временной теории подкрепило открытие, что паттерн нервных импульсов в слуховом нерве повторяет форму волны стимульного тона, несмотря на то, что отдельные клетки реагируют не на каждое колебание (Rose et al., 1967).

Однако способность нервных волокон отслеживать форму волны обрывается примерно на частоте 4000 герц; тем не менее мы можем слышать высоту звука, содержащего гораздо более высокие частоты. Отсюда следует, что должно существовать другое средство кодирования высотного качества звука, по крайней мере на высоких частотах.

Другая теория восприятия высоты звука относится к 1683 году, когда французский анатом Жозеф Гишар Дювернье предположил, что частота кодируется высотой звука механически, путем резонанса (Green & Wier, 1984). Чтобы разобраться в этом предположении, полезно сначала рассмотреть пример резонанса. Когда ударяют по камертону, который находится рядом с пианино, струна пианино, настроенная на частоту камертона, начинает колебаться. Если мы говорим, что ухо работает по тому же принципу, это значит, что в нем есть некая структура, сходная по конструкции со струнным инструментом, причем различные ее части настроены на различные частоты, так что когда на ухо предъявляется некоторая частота, соответствующая часть этой структуры начинает колебаться. Эта идея была в общем правильной: такой структурой оказалась базилярная мембрана.

Как именно колеблется базилярная мембрана, не было известно до 1940 года, когда Георг фон Бекеши измерил ее движения при помощи маленьких отверстий, просверленных в улитках морских свинок и человеческих трупов. Учитывая результаты Бекеши, потребовалось модифицировать теорию локальности; базилярная мембрана вела себя не как пианино с раздельными струнами, а как простыня, которую встряхнули за один конец. В частности, Бекеши показал, что при большинстве частот вся базилярная мембрана приходит в движение, но место наиболее интенсивного движения зависит от конкретной частоты звучания. Высокие частоты вызывают вибрацию в ближнем конце базилярной мембраны; по мере повышения частоты паттерн вибрации сдвигается к овальному окошечку (Bekesy, 1960). За это и другие исследования слуха Бекеши получил в 1961 году Нобелевскую премию.

Как и временные теории, теория локальности объясняет многие, но не все явления восприятия высоты звука. Основные затруднения у теории локальности связаны с тонами низких частот. При частотах ниже 50 герц все части базилярной мембраны вибрируют примерно одинаково. Это значит, что все рецепторы активируются в равной степени, из чего следует, что у нас нет способа различения частот ниже 50 герц. На самом же деле мы можем различать частоту всего в 20 герц.

Таким образом, теории локальности затрудняются объяснить восприятие низкочастотных звуков, а временные теории - восприятие высоких частот. Все это навело на мысль, что восприятие высоты звука определяется как временными паттернами, так и паттернами локализации, причем временная теория объясняет восприятие низких частот, а теория локальности - восприятие высоких частот. Ясно, однако, что там, где один механизм отступает, начинает преобладать другой. На самом деле не исключено, что частоты от 1000 до 5000 герц обслуживаются обоими механизмами (Coren, Ward & Enns, 1999).

Поскольку наши уши и глаза играют столь важную роль в нашей повседневной жизни, были предприняты значительные усилия, направленные на то, чтобы заменить их на искусственные у индивидуумов, страдающих неизлечимыми дефектами этих органов. Некоторые из этих усилий описаны в рубрике «На переднем крае психологических исследований».

56. Стадии сна. Ритмы ЭЭГ при различных стадиях сна. Виды сна. Потребность во сне в различные периоды онтогенеза. Нарушения сна.

Общая характеристика. Сон – это особая активность мозга, при которой выключено сознание и

механизмы поддержания естественной позы, снижена чувствительность анализаторов. Засыпанию

способствует ряд факторов: соблюдение режима сна, т.е. сон в одно и то же время (циркадианный

биоритм), утомление нервных клеток, ослабление активности анализаторов (закрытие глаз, тишина),

удобная поза. Человек может спать и во время шума (шум от автомобилей на улице, невыключенное

радио и т.д.). Следует, однако, помнить, что шум отрицательно влияет на сон, нарушая его глубину,

последовательность фаз и тем самым ухудшая общее самочувствие. Поэтому спальню нужно, насколько

это возможно, изолировать от внешних раздражителей.

Признаки сна: 1) снижение уровня сознания; 2) зевание; 3) понижение чувствительности

анализаторов; 4) урежение сердцебиений и дыхания, снижение секреторной деятельности желез

(слюнных – сухость слизистой рта, слезных – жжение глаз, слипание век).

Продолжительность сна взрослых 7 – 8 ч в сутки. Однако известны случаи, когда люди длительное

время спали значительно меньше и сохраняли высокую работоспособность. Например, Наполеон I и Т.

Эдисон спали по 2 ч. К настоящему времени известно, что люди, спящие 7 – 8 ч в сутки, живут дольше

других при прочих равных условиях. Продолжительность сна у детей зависит от возраста.

Новорожденный спит около 20 ч в сутки, в возрасте 6 мес -15 ч. Естественная потребность во сне с

годами уменьшается. К концу первого года жизни продолжительность сна сокращается до 13 ч в сутки.

Средняя продолжительность сна у детей 2-го года – 12 ч, 9 лет – 10 ч, 13 – 15 лет – 9 ч, 16 – 19 лет – 8 ч

Структура сна. Весь период сна делится на две фазы: медленный и быстрый сон. Сонное состояние

мозга характеризуется возникновением в ЭЭГ «сонных веретен» (12 – 16 колебаний в 1 с) и

синхронизированными крупными медленными волнами ЭЭГ в -диапазоне. Такая фаза сна получила

название медленноволнового (ортодоксального) сна. Это состояние мозга периодически в течение ночи

заменяется быстрой низкоамплитудной десинхронизированной активностью (до 30 колебаний в 1 с),

которая напоминает ЭЭГ человека и животных во время бодрствования. Так как при этом сон не

прерывается, а по некоторым показателям становится даже более глубоким, то эта фаза сна в отличие от

предыдущей получила наименование парадоксального (быстрого) сна. Смена быстрого и медленного

сна происходит через равные промежутки времени со средней длительностью около 90 мин (один

цикл). При этом на медленный сон приходится около 80%, на быстрый – 20 % от всего периода сна.

Одной из характерных черт быстрого сна является возникновение быстрых движений глаз, более

сильное снижение тонуса мышц. На этом фоне у животных возникают различные движения: усов, ушей,

хвоста, подергивания лап, лизательные и сосательные движения, учащается и становится нерегулярным

дыхание, возникает неритмичный и частый пульс, повышается артериальное давление, усиливается

гормональная активность. Весьма существенно, что при этом активность мотонейронов спинного мозга

резко заторможена. В период медленного сна наблюдается урежение дыхания, пульса, снижение

артериального давления, общие движения туловища. Лишение животных парадоксального сна делает

их возбудимыми, раздражительными.

Рис. 9.2. Классификация стадий сна (А – Е) у человека с учетом особенностей ЭЭГ (по Лумису и др.;

Клайтману и др.). Три нижние кривые представляют собой одновременную запись ЭЭГ, ЭОГ и ЭМГ

указательного пальца во время БДГ-сна (со сновидениями). Обычно его эпизоды возникают в конце каждогоцикла сна

Для оценки глубины сна обычно используют электроэнцефалограмму (ЭЭГ). По особенностям ЭЭГ,

исходя из общепринятых стандартных критериев, выделяют четыре или пять стадий медленного сна. В

состоянии расслабленного бодрствования преобладает -ритм с изменчивой амплитудой (рис. 9.2). В

стадии А сна -ритм постепенно исчезает, между его эпизодами появляются все более длительные

интервалы с очень маленькими -волнами. Это соответствует переходу от бодрствования ко сну

(дремота), она длится несколько минут, причем некоторые авторы относят стадию А сна к

бодрствованию. Для стадии В сна (засыпание и самый поверхностный сон) характерны -волны. В

конце стадии над прецентральной областью мозга можно записать высокоамплитудные «вертекс-

зубцы» длительностью 3 – 5 с, предвещающие наступление стадии С сна (поверхностный сон). После

их появления спящий человек уже не различает слабые внешние раздражители. Характерной

особенностью биоэлектрической активности мозга в этой фазе служат веретенообразные всплески -

ритма («сонные веретена») и К-комплексы. В cmадии D сна (умеренно глубокий сон) регистрируются

быстрые -волны частотой 3,0–3,5 Гц, а в стадии Е сна (глубокий сон) - медленные

(синхронизированные) колебания, представляющие собой почти исключительно крайне медленные -

волны (частотой 0,7 – 1,2 Гц), на которые эпизодически накладываются мелкие -волны.

Рис. 9.3. Соотношение сна и бодрствования, а также БДГ-фазы и медленноволнового сна в различные периодыжизни человека. (по H.P. Roffward и др., 1966)

Наиболее существенное изменение в раннем возрасте – уменьшение обшей длительности сна и значительное снижение в нем доли БДГ-фазы

Затем развивается фаза быстрого сна, характеризующаяся десинхронизацией ЭЭГ (как в стадии В)

и эпизодами быстрых движений глаз (БДГ), которые можно наблюдать со стороны через сомкнутые

веки спящего или записывать методами электроокулографии (см. кривую ЭОГ на рис. 9.2).

Соотношение стадий быстрого и медленного сна и изменения их соотношения в онтогенезе

представлены на рис. 9.3. Остальная мускулатура в фазу быстрого сна, как и во время медленного сна,

атонична, за исключением возникающих иногда судорожных сокращений мышц лица или пальцев (см.

ЭМГ на рис. 9.2), сопровождающихся возрастанием частоты дыхания и сужением сосудов пальцев.

Сновидения – возникающие во сне образные представления и воспринимаемые как реальная

действительность. Детям и взрослым гораздо легче вспомнить содержание только что увиденного сна,

если их разбудить во время БДГ-фазы или тотчас после ее окончания; проснувшись в фазе

медленноволнового сна, человек часто не помнит сновидений. Отмечается высокая частота

воспоминаний в первом случае (60 – 90%) и существенно более низкая, причем значительно

колеблющаяся (от 1 до 74%), во втором. В то же время в медленноволновом сне наблюдается разговор,

снохождение и ночные страхи у детей. По некоторым данным, в 64 % пробуждений от медленного сна

человек рассказывает о психических переживаниях. Причем они, скорее, напоминают не сновидения, а

мысли, рассуждения. Между переживаниями во сне в медленном и парадоксальном сне существуют

значительные различия. В медленном сне во время сновидений зрительные картины менее четки, менее

аффективны, менее длительны и более реальны. Обнаружено, что даже когда людей или животных в

течение длительного времени лишали БДГ-сна, а следовательно, и сновидений, вопреки

существовавшим ранее предположениям, никаких продолжительных физических или психических

расстройств у них не возникало.

Факторы, побуждающие сновидения. 1. Предшествующая сну деятельность (дети продолжают

«играть» во сне, исследователь ставит эксперименты и т.д.). Например, известному физиологу О. Леви

приснилась модель опыта, с помощью которого он открыл медиаторный механизм передачи влияний с

симпатического и парасимпатического нервов на сердце. Менделееву сновидение помогло создать свою

знаменитую таблицу химических элементов. 2. Раздражители, действующие на организм во время сна.

Так, если приложить горячую грелку к ногам, спящему человеку может присниться сон, что он идет по

раскаленному песку. 3. Избыточная импульсация от переполненных или больных внутренних органов

может вызывать кошмарные сновидения. 4. Биологические потребности могут вызвать

соответствующие сновидения, например в случае отклонения показателей гомеостазиса.

Н.И. Касаткин (1973) полагает, что сновидения в период быстрого сна выполняют роль «стража»,

сигнализирующего о внутренних опасностях, ибо в сновидениях могут быть предсказаны заболевания

на 1 – 3 мес раньше их появления. Сны носят преимущественно зрительный характер. У

слепорожденных зрительные образы в снах отсутствуют и преобладают осязательные. К настоящему

времени установлено, что нет людей, не видящих сны, которые возникают в среднем 4 – 6 раз в ночь.

Если пробуждение наступает в стадии быстрого сна, то 70 – 90% людей детально и достаточно

эмоционально рассказывают о своих сновидениях, а если в медленном – лишь 7 – 10%. Часть

сновидений связана с сексуальной жизнью. Такой характер сновидений (у молодых и холостых людей

или при длительном половом воздержании) сопровождается поллюциями. В среднем 70% женщин

также видят сексуальные сны, в период которых может возникать оргазм. Сексуальные мотивы во сне

возникают у девушек в период менструаций.

57. Состояние бодрствования.

Бодрствование – состояние психики, характеризующееся достаточно высоким уровнем электрической активности мозга, свойственным активному взаимодействию индивида с внешним миром. Бодрствование является тем фун­кциональным состоянием, на фоне которого разворачивается любая психическая деятельность. Значи­мость этого состояния для обеспече­ния эффективности деятельности при ее оптимальной физиологичес­кой стоимости чрезвычайно велика. Состояние бодрствования не являет­ся однородным. В нем выделяются активное бодрствование и спокойное бодрствование.

Одну из важнейших ролей в поддержании состояния бодрствования играет ретикулярная формация среднего мозга, от нейронов которой восходящие влияния идут к неспецифическим ядрам таламуса, а от них ко всем зонам коры больших полушарий. Бодрствование образует поле всевозможных сочетаний функций сознания – от состояния спокойного бодрствования через активное, напряженное бодрствование до выраженных аффектов.

В общих чертах схема нашей психики в состоянии бодрствования на основании данных объективной психологии выглядит следующим образом.

Природа раздражений, достигающих мозга, и вместе с тем восприятия имеют двойственный характер. Одни раздражения поступают в мозг от внутренних областей тела и обусловлены они разнообразными органическими процессами. Они возбуждают в мозгу различного рода органические впечатления, оставляющие в нем известные следы способные к оживлению.

Другой порядок раздражений проникает в мозг от воздействий, которые идут извне организма и влияют на мозг посредством, так называемых внешних воспринимающих органов. Они являются материальной основой внешних впечатлений, субъективным показателем которых служат ощущения. Часть внешних впечатлений и образуемых ими следов вступают в соотношение со сферой личности и становятся ее достоянием

Другие же внешние впечатления и их следы до поры, до времени оставаясь вне сферы личности, тем не менее, возбуждают те или другие внешние двигательные или иные реакции, которые в большинстве случаев не вступают в соотношение с личностью, - иначе говоря, остаются незамеченными нами. Сюда относится целый ряд психорефлекторных двигательных реакций, таких, как ходьба, мимические движения и множество других движений, которые принято считать автоматическими. Но с того момента, когда эти движения возбуждают реакцию сосредоточения, они уже вступают в соотношение со сферой личности и становятся в прямую от нее зависимость. Таким образом и бессознательная ассоциативная деятельность, вступая путем внутреннего сосредоточения в соотношение со сферой личности, становится как бы ее достоянием и становится от нее зависимой в том смысле, что может быть оживляема под влиянием личных потребностей

58. Механизмы регуляции сна и бодрствования.

Переход от бодрствования ко сну предполагает два возможных пути. Прежде всего не исключено,

что механизмы, поддерживающие состояние бодрствования, постепенно «утомляются». В соответствии

с такой точкой зрения сон - это пассивное явление, следствие снижения уровня бодрствования. Однако

не исключено и активное торможение механизмов, обеспечивающих бодрствование. И.П. Павлов

выделял два механизма развития сна, которые, по существу, подтверждают правомерность позиций

сторонников как пассивной, так и активной теории сна. С одной стороны, сон возникает как явления

охранительного торможения в результате сильного и длительного раздражения какого-либо

отдельного участка коры больших полушарий. С другой стороны, сон возникает как результат

внутреннего торможения, т.е. активного процесса формирования отрицательного условного

рефлекса. Важную роль в регуляции цикла сон – бодрствование играет ретикулярная формация ствола

мозга, где находится множество диффузно расположенных нейронов, аксоны которых идут почти ко

всем областям головного мозга, за исключением неокортекса. Роль РФ в цикле сон – бодрствование

была исследована в конце 1940-х годов учеными Г. Моруцци и Н. Мэгуном, обнаружившими, что

высокочастотное электрическое раздражение этой структуры у спящих кошек приводит к их

мгновенному пробуждению. И напротив, повреждения ретикулярной формации вызывают постоянный

сон, напоминающий кому; перерезка же только сенсорных трактов, проходящих через ствол мозга,

такого эффекта не дает. Наиболее ранними теориями сна были гуморальные. Фактор сна, лишенный

видовой специфичности, был выделен из ликвора коз, подвергнувшихся депривации сна. Согласно

сосудистой (циркуляторной или гемодинамической) теории сна, наступление сна связано со

снижением кровотока в мозге или с его усилением. Современные исследования показали, что в течение

сна действительно происходит колебание кровенаполнения мозга. Р. Лежандр и X. Пьерон (1910)

считали, что сон возникает в результате накопления токсических продуктов обмена вследствие

утомления (гипотоксины). Собакам долгое время не давали спать, а затем забивали, экстрагировали

вещества из мозга и вводили другим собакам. У последних развивались признаки крайнего утомления и

возникал глубокий сон. То же наблюдалось при «переносе» сыворотки крови или спинно-мозговой

жидкости.

В верхних отделах ствола мозга есть две области – ядра шва и голубое пятно, у нейронов которых

такие же обширные проекции, как и у нейронов ретикулярной формации, т.е. достигающие многих

областей ЦНС. Ядра шва захватывают срединную часть продолговатого мозга, моста и среднего мозга.

Разрушение их устраняет синхронизацию ЭЭГ и медленный сон. С помощью специальной методики

флуоресценции гистохимики показали, что нейроны ядер шва синтезируют серотонин и направляют

его через свои аксоны к ретикулярной формации, гипоталамусу, лимбической системе. Серотонин –

тормозной медиатор моноаминергической системы мозга. Блокада синтеза серотонина устраняет у

кошки медленный сон, у которой сохраняется лишь парадоксальный сон.

В среднем мозге (покрышка) обнаружено скопление нейронов, синтезирующих норадреналин

(голубое пятно). Стимуляция голубого пятна вызывает торможение нейронной активности во многих

структурах мозга при росте двигательного возбуждения животного и ЭЭГ-десинхронизации. Полагают,

что активирующее влияние голубого пятна осуществляется через механизм торможения тормозных

интернейронов. Ядра шва и голубое пятно действуют как антагонисты. Медиатором в клетках ядер

шва служит серотонин (5-гидрокситриптамин, 5-НТ), а голубого пятна – норадреналин. Разрушение

ядер шва у кошки приводит к полной бессоннице в течение нескольких дней; но за несколько

последующих недель сон нормализуется. Частичная бессонница может быть также вызвана

подавлением синтеза 5-НТ п-хлорфенилаланином. Ее можно устранить введением 5-

гидрокситриптофана, предшественника серотонина (последний не проникает через гематоэн-

цефалический барьер). Двустороннее разрушение голубого пятна приводит к полному исчезновению

БДГ-фаз, не влияя на медленноволновый сон. Истощение запасов серотонина и норадреналина под

влиянием резерпина вызывает, как и следовало ожидать, бессонницу. Однако оказалось, что нейроны

ядер шва наиболее активны и выделяют максимум серотонина не во время сна, а при бодрствовании.

Кроме того, возникновение БДГ, по-видимому, обусловлено активностью нейронов не столько голубого

пятна, сколько более диффузного подголубого ядра. Судя по результатам недавних экспериментов,

серотонин служит и медиатором в процессе пробуждения, и «гормоном сна» в бодрствующем

состоянии, стимулируя синтез или высвобождение «веществ сна» (факторов сна), которые в свою

очередь вызывают сон. Структуры таламуса выполняют функцию «пейсмекера» для вызова

ритмических потенциалов веретен во сне и -ритма в бодрствовании. Таламокортикальный механизм

можно рассматривать как механизм внутреннего торможения, способного изменять активность мозга

частично или глобально таким образом, что сенсорные, моторные и высшие функции мозга

подавляются.

Структуры, ответственные за медленный сон, находятся в каудальной части мозгового ствола,

главным образом – в продолговатом мозге. Наличие сходных гипногенных структур было установлено

также и в задней части моста. Двигательные и ЭЭГ-проявления фазы парадоксального сна связаны с

активацией структур в области моста. Эта фаза сна сокращается при эмоциональном стрессе, при этом

удлиняется период засыпания.

Рядом с голубым пятном имеется группа гигантских ретикулярных нейронов, которые направляют

свои аксоны вверх и вниз к различным структурам мозга. В бодрствовании и медленном сне эти

нейроны малоактивны, но их активность весьма высока во время парадоксального сна.

Были сделаны попытки обнаружить особые вещества либо после длительного лишения сна, либо у

спящего человека. Первый из этих подходов основан на предположении о том, что фактор(ы) сна во

время бодрствования накапливаются до вызывающего сон уровня, а второй – на гипотезе, согласно

которой они образуются или выделяются во сне.

Оба подхода дали определенные результаты. Так, при проверке первой гипотезы из мочи и

спинномозговой жидкости человека и животных был выделен небольшой глюкопептид – фактор S,

вызывающий медленноволновый сон при введении другим животным. Существует, по-видимому, и

фактор сна с БДГ. Второй подход привел к открытию индуцирующего глубокий сон нонапептида (в

настоящее время он уже синтезирован), так называемого пептида -сна (SIP, delta-sleep inducing

peptide). Однако пока неизвестно, играют ли эти и многие другие «вещества сна», обнаруженные при

проверке обеих гипотез, какую-либо роль в его физиологической регуляции. Более того, выделенные

пептиды часто вызывают сон лишь у животных определенного вида; кроме того, он возникает и под

действием других веществ.

Однако сросшиеся девочки-близнецы могли спать порознь, что свидетельствует о второстепенной

роли гуморальных факторов и решающей роли в развитии сна нервной системы.

Развивается представление о том, что цикл бодрствование – сон обеспечивается системой двух

центров. К. Экономо на основе клинических наблюдений больных с повреждениями различных

участков гипоталамуса предположил, что центр бодрствования локализован в заднем, а центр сна – в

его передних отделах. С. Рэнсон, производя локальные повреждения различных участков гипоталамуса,

подтвердил это мнение. В настоящее время считают, что гипоталамус является критической зоной для

регулирования цикла бодрствование – сон. Это мнение подтверждается и тем, что как высокочастотное,

так и низкочастотное электрическое раздражение преоптической области гипоталамуса вызывает

синхронизацию электроэнцефалограммы и поведенческий сон. Противоположный эффект, а именно

поведенческое и электроэнцефалографическое пробуждение Т.Н. Ониани наблюдал при раздражении

заднего гипоталамуса. Это позволяет предположить наличие реципрокного взаимоотношения между

передней и задней областями гипоталамуса и его значение для регуляции чередования различных фаз

цикла бодрствование – сон. По данным Т.Н. Ониани, в цикле бодрствование – сон мультинейронная

активность ретикулярной формации.

Основные характеристики звука. Передача звука на большое расстояние.

Основные характеристики звука:

1. Тон звука (количество колебаний в секунду). Звуки низкого тона (например, звук, создаваемый большим барабаном) и высокого тона (например, свист). Ухо легко различает эти звуки. Простые измерения (развёртка колебаний) показывают, что звуки низких тонов – колебания малой частоты в звуковой волне. Звуку высокого тона соответствует большая частота колебаний. Частота колебаний в звуковой волне определяет тон звука.

2. Громкость звука (амплитуда). Громкость звука, определяемая его действием на ухо, является оценкой субъективной. Чем больше поток энергии, притекающей к уху, тем больше громкость. Удобной для измерения является интенсивность звука – энергия, переносимая волной за единицу времени через единичную площадку, перпендикулярную к направлению распространения волны. Интенсивность звука возрастает при увеличении амплитуды колебаний и площади тела, совершающего колебания. Также для измерения громкости пользуются децибелами (дБ). Например, громкость звука хороша листьев оценивается в 10 дБ, шёпота – 20 дБ, уличного шума - 70 дБ, болевой порог – 120 дБ, а смертельный уровень – 180 дБ.

3. Тембр звука . Вторая субъективная оценка. Тембр звука определяется совокупностью обертонов. Разное количество обертонов, присущих тому или иному звуку, придаёт ему особую окраску – тембр. Отличие одного тембра от другого обусловлено не только числом, но и интенсивностью обертонов, сопровождающих звучание основного тона. По тембру легко можно различать звуки различных музыкальных инструментов, голоса людей.

Звуковые колебания с частотой менее 20 Гц человеческое ухо не воспринимает.

Звуковой диапазон уха – 20 Гц – 20 тыс. Гц.

Передача звука на большое расстояние.

Проблема передачи звука на расстояние была успешно решена посредством создания телефона и радио. С помощью микрофона, имитирующего человеческое ухо, акустические колебания воздуха (звук) в определённой точке преобразуют в синхронные изменения амплитуды электрического тока (электрический сигнал), который по проводам или с помощью электромагнитных волн (радиоволн), доставляют в нужное место и преобразуют в акустические колебания, подобные исходным.

Схема передачи звука на расстояние

1. Преобразователь «звук - электрический сигнал» (микрофон)

2. Усилитель электрического сигнала и электрическая линия связи (провода или радиоволны)

3. Преобразователь «электрический сигнал – звук» (громкоговоритель)

Объёмные акустические колебания воспринимаются человеком в одной точке и могут быть представлены в виде точечного источника сигнала Сигнал имеет два параметра, связанных функцией времени: частоту колебания (тон) и амплитуду колебания (громкость). Необходимо пропорционально преобразовать амплитуду акустического сигнала в амплитуду электрического тока, сохраняя частоту колебания.

Источники звука - любые явления, вызывающие местное изменение давления или механическое напряжение. Широко распространены источники Звука в виде колеблющихся твёрдых тел. Источниками Звука могут служить и колебания ограниченных объёмов самой среды (например, в органных трубах, духовых музыкальных инструментах, свистках и т.п.). Сложной колебательной системой является голосовой аппарат человека и животных. Обширный класс источников Звук -электроакустические преобразователи, в которых механические колебания создаются путём преобразования колебаний электрического тока той же частоты. В природе Звук возбуждается при обтекании твёрдых тел потоком воздуха за счёт образования и отрыва вихрей, например при обдувании ветром проводов, труб, гребней морских волн. Звук низких и инфранизких частот возникает при взрывах, обвалах. Многообразны источники акустических шумов, к которым относятся применяемые в технике машины и механизмы, газовые и водяные струи. Исследованию источников промышленных, транспортных шумов и шумов аэродинамического происхождения уделяется большое внимание ввиду их вредного действия на человеческий организм и техническое оборудование.

Приёмники звука служат для восприятия звуковой энергии и преобразования её в др. формы. К приёмникам Звука относится, в частности, слуховой аппарат человека и животных. В технике для приёма Звука применяется главным образом электроакустические преобразователи, например, микрофон.
Распространение звуковых волн характеризуется в первую очередь скоростью звука. В ряде случаев наблюдается дисперсия звука, т. е. зависимость скорости распространения от частоты. Дисперсия Звука приводит к изменению формы сложных акустических сигналов, включающих ряд гармонических составляющих, в частности - к искажению звуковых импульсов. При распространении звуковых волн имеют место обычные для всех типов волн явления интерференции и дифракции. В случае, когда размер препятствий и неоднородностей в среде велик по сравнению с длиной волны, распространение звука подчиняется обычным законам отражения и преломления волн и может рассматриваться с позиций геометрической акустики.

При распространении звуковой волны в заданном направлении происходит постепенное её затухание, т. е. уменьшение интенсивности и амплитуды. Знание законов затухания практически важно для определения предельной дальности распространения звукового сигнала.

Способы коммуникации:

· Изображения

Система кодирования должна быть понятна адресату.

Звуковые коммуникации появились первыми.

Звук (носитель – воздух)

Звуковая волна – перепады давления воздуха

Кодируемая информация – барабанные перепонки

Чувствительность слуха

Децибел – относительная логарифмическая единица

Свойства звука:

Громкость (Дб)

Тональность

0 Дб = 2*10(-5) Па

Порог слышимости – болевой порог

Динамические диапазон – отношение самого громкого звука к самому маленькому

Порог = 120 Дб

Частота (Гц)

Параметры и спектр звукового сигнала: речь, музыка. Реверберация.

Звук – колебание, имеющее свою частоту и амплитуду

Чувствительность нашего уха к разным частотам – разная

Гц – 1 к\с

От 20 Гц до 20 000 Гц – звуковой диапазон

Инфрозвуки – звуки менее 20 Гц

Звуки свыше 20 тыс. Гц и менее 20 Гц не воспринимаются

Промежуточная система кодирования и декодирования

Любой процесс может быть описан набором гармонических колебаний

Спектр звукового сигнала – совокупность гармонических колебаний соответствующих частот и амплитуд

Амплитуда меняется

Частота постоянна

Звуковое колебание – изменение амплитуды во времени

Зависимость взаимных амплитуд

Амплитудно-частотная характеристика – зависимость амплитуды от частоты

У нашего уха есть амплитудно-частотная характеристика

Устройство не идеально, у него есть АЧХ

АЧХ – у всего, что связано с преобразованием и передачей звука

Эквалайзер регулирует АЧХ

340 м\с – скорость звука в воздухе

Реверберация – размывание звука

Время реверберации – время, за которое сигнал уменьшится на 60 Дб

Компрессирование – прием обработки звука, когда громкие звуки снижены, а тихие звучат громче

Реверберация – характеристика помещения, в котором распространяется звук

Частота дискретизации – количество отсчетов в секунду

Фонетическое кодирование

Фрагменты информационного образа – кодирование – фонетический аппарат – человеческий слух

Волны не могут распространяться далеко

Можно увеличить мощность звучания

Электрический ток

Длина волны – расстояние

Звук=функция A(t)

Преобразовать А звуковых колебаний в А электрического тока = вторичное кодирование

Фаза – задержка в угловых измерениях одного колебания относительно другого во времени

Амплитудная модуляция – информация содержится в изменении амплитуды

Частотная модуляция – в частоте

Фазовая модуляции – в фазе

Электромагнитное колебание – распространяется без поводов

Окружность 40 тыс.км.

Радиус 6,4 тыс. км

Мгновенно!

Частотные, или линейные искажения возникают на каждом этапе передачи информации

Коэфициент передачи амплитуды

Линейные – будут передаваться сигналы с потерей информации

Можно скомпенсировать

Нелинейные – нельзя предотвратить, связаны с невосстановимым искажением амплитуды

1895 г. Эрстед Максвел обнаружил энергию – электромагнитные колебания могут распространяться

Попов изобрел радио

1896 г зарубежом Маркони купил патент, право на использование трудов Тесла

Реальное применение в начале ХХ века

Колебание электрического тока не сложно накладывать на электромагнитные колебания

Частота должна быть выше частоты информации

В начале 20-х годов

Передача сигнала методом амплитудной модуляции радиоволн

Диапазон до 7 000 Гц

AM Радиовещание длинноволновое

Длинные волны, имеющие частоты выше 26 мГц

Средние волны от 2,5 мГц до 26 мГц

Нет границ распространения

Ультракороткие волны (частотная модуляция), стереовещание (2 канала)

FM – частотная

Фазовая не используется

Несущая частота радио

Диапазон радиовещания

Несущая частота

Зона уверенного приема – та территория, на которой радио-волны распространяются с энергией, достаточной для качественного приема информации

Dкм=3,57(^H+^h)

Н – высота передающей антенны (м)

h – высота приемной (м)

от высоты антенны при условии достаточной мощности

Радио-передатчик – несущая частота, мощность и высота расположения передающей антенны

Лицензируемый

Для распространения радио-волн требуется лицензия

Сеть радиовещания:

Источник звук содержания (контента)

Соединительные линии связи

Передатчики (Луначарского, возле цирка, азбест)

Радиоприемник

Резервирование энергопитания

Радиопрограмма – совокупность звуковых сообщений

Радиостанция – источник вещания радиопрограммы

· Традиционные: Радиоредакция (творческий коллектив), Радиодом (совокупность технических и технологических средств)

Радиодом

Радиостудия – помещение, обладающее подходящими акустическими параметрами, звукоизолированное

Дискретизация по чистоте

Аналоговый сигнал во времени разбивается на интервалы. Измеряется в Герцах. Количество интервалов нужно чтоб замерить амплитуду на каждом отрезке

Разрядность квантования. Частота дискретизации – разбиение сигнала во времени на равные отрезки в соответствии с теоремой Котельникова

Для неискаженной передачи непрерывного сигнала, занимающего определенную полосу частот, необходимо, чтобы частота дискретизации была как минимум вдвое выше верхней частоты воспроизводимого диапазона частот

От 30 до 15 кГц

CD 44-100 кГц

Цифровое сжатие информации

- или компрессия – конечная цель – исключение из цифрового потока избыточной информации.

Звуковой сигнал – случайный процесс. Уровни связаны в течение времени корреляции

Корреляционные – связи, описывающие события во временных отрезках: предыдущего, настоящего и будущего

Длительные – весна, лето, осень

Кратковременные

Метод экстраполяции. Из цифрового в синусойду

Передают только разницу следующего сигнала и предыдущего

Психофизические свойства звука – позволяет уху отбирать сигналы

Удельный вес в объеме сигнала

Реальные\импульсивные

Система помехоусточива, от формы импульса ничего не зависит. Импульс легко восстановить

АЧХ – зависимость амплитуды от частоты

АЧХ регулирует тембр звучания

Эквалайзер – корректор АЧХ

Низкие, средние, высокие частоты

Басы, средние, верха

Эквалайзер 10, 20, 40, 256 полосные

Анализатор спектра – удалить, распознать голос

Психоакустические устройства

Силы – процесс

Частотное устройство обработки – плагины – модули, которые при открытом коде программы дорабатывают, посылают

Динамическая обработка сигнала

Приложения – устройства, которые регулируют динамические устройства

Громкость – уровень сигнала

Регуляторы уровня

Фейдеры \ микшеры

Фейд in \ Фейд out

Уменьшение шума

Пикосрезатель

Компрессор

Шумоподавитель

Цветовое зрение

В глазу человека содержатся два типа светочувствительных клеток (фоторецепторов): высоко чувствительные палочки, отвечающие за ночное зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра.

Бинокулярное

Зрительный анализатор человека в нормальных условиях обеспечивает бинокулярное зрение, то есть зрение двумя глазами с единым зрительным восприятием.

Частотные диапазоны радиовещания АМ (ДВ, СВ, КВ) и ЧМ (УКВ и FM).

Радио - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемый сигнал модулирует более высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей - несущей). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).

В практике радиовещания и телевидения используется упрощённая классификация радиодиапазонов:

Сверхдлинные волны (СДВ) - мириаметровые волны

Длинные волны (ДВ) - километровые волны

Средние волны (СВ) - гектометровые волны

Короткие волны (КВ ) - декаметровые волны

Ультракороткие волны (УКВ) - высокочастотные волны, длина волны которых меньше 10 м.

В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.

СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.

КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т. н. зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью - более длинные (3 МГц). Короткие волны могут распространяться на больши́е расстояния при малой мощности передатчика.

УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой, однако при определённых условиях способны огибать земной шар из-за разности плотностей воздуха в разных слоях атмосферы. Легко огибают препятствия и имеют высокую проникающую способность.

Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).

Новые диапазоны ТВ вещания

· MMDS диапазон 2500-2700 ГГЦ 24 канала для аналогового ТВ вещания. Использовалось в системе кабельного телевидения

· LMDS: 27,5-29,5 ГГЦ. 124 ТВ аналоговых канала. С цифровой революции. Осваивается операторами сотовой связи

· MWS – MWDS: 40,5-42,4 ГГЦ. Система сотового телевещания. Высокие 5 км частоты быстрое поглощаются

2. Изображение на пиксели разложить

256 уровней

Опорный кадр, затем его изменения

Аналогово-цифровой преобразователь

На входе – аналог, на выходе – цифровой поток. Форматы цифрового сжатия

Некопменсированное видео – три цвета в пикселях 25 к\с, 256 мегабит\с

dvd, avi – имеет поток 25 мб\с

mpeg2 – дополнительная компрессия от 3-4 раз в спутнике

Цифровое ТВ

1. Упрощаем, уменьшаем количество точек

2. Упрощаем выбор цвета

3. Применяем компрессии

256 уровней – динамический диапазон яркости

Цифровое в 4 раза больше по горизонтали и вертикали

Недостатки

· Резко ограниченная территория покрытия сигнала, внутри которой приём возможен. Но эта территория при равной мощности передатчика больше, чем у аналоговой системы.

· Замирания и рассыпания картинки на «квадратики» при недостаточном уровне принимаемого сигнала.

· Оба «недостатка» являются следствием преимуществ передачи цифровых данных: данные либо принимаются качественно на 100 % или восстанавливаются, либо принимаются плохо с невозможностью восстановления.

Цифровое радио - технология беспроводной передачи цифрового сигнала посредством электромагнитных волн радиодиапазона.

Преимущества:

· Более высокое качество звука по сравнению с FM-радиовещанием. В настоящее время не реализовано из-за низкой скорости потока (типично 96 кбит/c).

· Помимо звука могут передаваться тексты, картинки и другие данные. (Больше, чем в RDS)

· Слабые радиопомехи никак не изменяют звук.

· Более экономичное использование частотного пространства посредством передачи сигналов.

· Мощность передатчика может быть сокращена в 10 - 100 раз.

Недостатки :

· В случае недостаточной мощности сигнала в аналоговом вещании появляются помехи, в цифровом - трансляция пропадает вовсе.

· Задержка звука из-за времени, необходимого на обработку цифрового сигнала.

· В настоящий момент во многих странах мира проводятся «полевые испытания».

· Сейчас в мире постепенно начинается переход к "цифре", но он гораздо медленнее, чем у телевидения из-за недостатков. Пока массовых отключений радиостанций в аналоговом режиме нет, хотя сокращается их количество в AM-диапазоне из-за более эффективного FM.

В 2012 году ГКРЧ подписан протокол, согласно которому выделяется полоса радиочастот 148,5-283,5 кГц для создания на территории Российской Федерации сетей цифрового радиовещания стандарта DRM. Также с соответствии с пунктом 5.2 протокола заседания ГКРЧ от 20 января 2009 г. № 09-01 проведена научно-исследовательская работа «Исследование возможности и условий использования цифрового радиовещания стандарта DRM в Российской Федерации в полосе частот 0,1485-0,2835 МГц (длинные волны)».

Таким образом, на неопределённое время вещание в FM-диапазоне будет осуществляться в аналоговом формате.

В России в первом мультиплексе цифрового эфирного телевидения DVB-T2 транслируются федеральные радиостанции Радио России, Маяк и Вести ФМ.

Интернет-радио или веб-радио - группа технологий передачи потоковых аудиоданных через сеть Интернет. Также в качестве термина интернет-радио или веб-радио может пониматься радиостанция, использующая для вещания технологию потокового вещания в Интернет.

В технологической основе системы лежит три элемента:

Станция - генерирует аудиопоток (либо из списка звуковых файлов, либо прямой оцифровкой с аудио карты, либо копируя существующий в сети поток) и направляет его серверу. (Станция потребляет минимум трафика, потому что создаёт один поток)

Сервер (повторитель потока) - принимает аудиопоток от станции и перенаправляет его копии всем подключённым к серверу клиентам, по сути является репликатором данных. (Трафик сервера пропорционален количеству слушателей + 1)

Клиент - принимает аудиопоток от сервера и преобразует его в аудиосигнал, который и слышит слушатель интернет-радиостанции. Можно организовывать каскадные системы радиовещания, используя в качестве клиента повторитель потока. (Клиент, как и станция, потребляет минимум трафика. Трафик клиента-сервера каскадной системы зависит от количества слушателей такого клиента.)

Кроме потока звуковых данных обычно передаются также текстовые данные, чтобы в плеере отображалась информация о станции и о текущей композиции.

В качестве станции могут выступать обычная программа-аудиоплеер со специальным плагином-кодеком или специализированная программа (например - ICes, EzStream, SAM Broadcaster), а также аппаратное устройство, преобразующее аналоговый аудиопоток в цифровой.

В качестве клиента можно использовать любой медиаплеер, поддерживающий потоковое аудио и способный декодировать формат, в котором вещает радио.

Следует заметить, что интернет-радио к эфирному радиовещанию, как правило, никакого отношения не имеет. Но возможны и редкие исключения, которые, на территории СНГ не распространены.

Телевидение межсетевого протокола (интернет-телевидение или on-line TV) - система, основанная на двусторонней цифровой передаче телевизионного сигнала через интернет-соединения посредством широкополосного подключения.

Система интернет-телевидения позволяет реализовать:

· Управление пакетом подписки каждого пользователя

· Трансляцию каналов в формате MPEG-2, MPEG-4

· Представление телевизионных программ

· Функцию регистрации телевизионных передач

· Поиск прошлых телевизионных передач для просмотра

· Функцию паузы для телеканала в режиме реального времени

· Индивидуальный пакет телеканалов для каждого пользователя

Новые СМИ или новые медиа - термин, который в конце XX века стали применять для интерактивных электронных изданий и новых форм коммуникации производителей контента с потребителями для обозначения отличий от традиционных медиа, таких как газеты, то есть этим термином обозначают процесс развития цифровых, сетевых технологий и коммуникаций. Конвергенция и мультимедийные редакции стали обыденными элементами сегодняшней журналистики.

Речь прежде всего о цифровых технологиях и эти тенденции связаны с компьютеризацией общества, поскольку до 80-х медиа полагались на аналоговые носители.

Следует отметить, что согласно закону Рипля более высокоразвитые средства массовой информации не являются заменой предыдущих, поэтому задача новых медиа это и вербовка своего потребителя, поиск иных областей применения, «онлайн-версия печатного издания вряд ли способна заменить само печатное издание».

Следует различать понятия «новые медиа» и «цифровые медиа». Хотя и там, и здесь практикуются цифровые средства кодировки информации.

Любой человек может стать издателем «нового СМИ» с точки зрения технологии процесса. Вин Кросби, который описывает «масс-медиа» как инструмент вещания «одного многим», рассматривает новые медиа как коммуникацию «многих со многими».

Цифровая эра формирует иную медиа-среду. Репортёры привыкают к работе в киберпространстве. Как отмечается, ранее «освещение международных событий было делом нехитрым»

Говоря о взаимоотношениях информационного общества и новых СМИ, Ясен Засурский акцентирует внимание именно на трёх аспектах, выделяя новые медиа именно как аспект:

· Возможности СМИ на современном этапе развития информационно-коммуникационных технологий и интернета.

· Традиционные СМИ в условиях «интернетизации»

· Новые средства массовой информации.

Радиостудия. Структура.

Как организовать факультетское радио?

Контент

Что иметь и уметь? Зоны вещания, состав оборудования, кол-во человек

Лицензия не обязательна

(Территориальный орган «Роскомнадзор», регистр. сбор, обеспечить периодичность, минимум – 1 раз в год, свидетельство юридическому лицу, регистрируется радиопрограмма)

Творческий коллектив

Главные редактор и юридическое лицо

Менее 10 человек – договор, больше 10 – устав

Технической базой производства радиопродукции является комплекс оборудования, на котором осуществляется запись радиопрограмм, обработка и последующая трансляция. Основной технической задачей радиостанций является обеспечение четкой, бесперебойной и высококачественной работы технологического оборудования радиовещания и звукозаписи.

Радиодома и телевизионные центры являются организационной формой тракта формирования программ. Сотрудники радио и телецентров подразделяются на специалистов творческих (журналисты, звуко- и видеорежиссеры, работники отделов выпуска, отделов координации и т.д.) и технических специальностей - аппаратно-студийный комплекс (работники студий, аппаратных и некоторых вспомогательных служб).

Аппаратно-студийный комплекс - это взаимосвязанные блоки и службы, объединенные техническими средствами, с помощью которых ведется процесс формирования и выпуска программ аудио- и телевещания. В состав аппаратно-студийного комплекса входят аппаратно-студийный блок (для создания частей программ), аппаратная вещания (для РВ) и аппаратно-программный блок (для ТВ). В свою очередь, аппаратно-студийный блок состоит из студий и технических и режиссерских аппаратных, что обусловлено различной технологией непосредственного вещания и записи.

Радиостудии - это специальные помещения для проведения радиопередач, отвечающие ряду требований акустической обработки, чтобы поддерживать низкий уровень шумов от внешних источников звука, создавать равномерное в объеме помещения звуковое поле. С появлением электронных устройств для регулирования фазовых и временных характеристик все большее применение находят небольшие полностью «заглушенные» студии.

В зависимости от назначения, студии делятся на малые (эфирные) (8-25 кв. м), студии средней величины (60-120 кв. м), большие студии (200-300 кв.м).

В соответствии с замыслом звукорежиссера в студии устанавливаются микрофоны, подбираются их оптимальные характеристики (тип, диаграмма направленности, выходной уровень сигналов).

Монтажные аппаратные предназначены для подготовки частей будущих программ от несложного монтажа музыкальных и речевых фонограмм после первичной записи до сведения многоканального звучания к моно- или стереозвучанию. Далее в аппаратной подготовки программ формируются части будущей передачи из оригиналов отдельных произведений. Таким образом, формируется фонд готовых фонограмм. Из отдельных передач формируется вся программа, поступающая в центральную аппаратную. Отделы выпуска и координации осуществляют согласование действий редакций. В крупных радиодомах и телецентрах, чтобы обеспечить соответствие старых записей современным техническим требованиям вещания, существуют аппаратные реставрации фонограмм, где редактируется уровень шумов и различных искажений.

После полного формирования программы электрические сигналы поступают в трансляционную аппаратную.

Аппаратно-студийный блок комплектуется режиссерским пультом, контрольно-громкоговорящим агрегатом, магнитофонами и устройствами звуковых эффектов. Перед входом в студию устанавливают светящиеся надписи: «Репетиция», «Приготовиться», «Микрофон включен». Студии оборудованы микрофонами и пультом диктора с кнопками включения микрофонов, сигнальными лампами, телефонными аппаратами со световым вызывным сигналом. Дикторы могут связаться с аппаратной, отделом выпуска, редакцией, некоторыми другими службами.

Главным устройством режиссерской аппаратной является пульт звукорежиссера, с помощью которого решаются одновременно и технические, и творческие задачи: монтажи преобразование сигнала.

В аппаратной вещания радиодома из различных передач формируется программа. Части программы, прошедшие звукорежиссерскую обработку и монтаж, не требуют дополнительного технического контроля, но нуждаются в совмещении различных сигналов (речь, музыкальное сопровождение, звуковые заставки и т.д.). Кроме того, в современных аппаратных вещания устанавливается оборудование для автоматизированного выпуска программ.

Конечный контроль программ осуществляется в центральной аппаратной, где на звукорежиссерском пульте происходит дополнительное регулирование электрических сигналов и их распределение по потребителям. Здесь производится частотная обработка сигнала, его усиление до требуемого уровня, сжатие или экспандирование, введение позывных программы и сигналов точного времени.

Состав аппаратного комплекса радиостанции.

Основные выразительные средства радиовещания - музыка, речь и служебные сигналы. Для сведения воедино в правильном балансе (микширования) всех звуковых сигналов служит основной элемент аппаратного комплекса радиовещания - микшерный пульт (mixing console). Сформированный на пульте сигнал с выхода пульта проходит через ряд специальных устройств обработки сигнала (компрессор, модулятор и т.п.) и подается (через линию связи или непосредственно) на передатчик. На входы пульта подаются сигналы всех источников: микрофонов, передающих речь ведущих и гостей эфира; устройств звуковоспроизведения; устройств воспроизведения сигналов. В современной радиостудии количество микрофонов может быть различным - от 1 до 6 и даже больше. Впрочем, для большинства случаев достаточно 2-3. Используются микрофоны самых разных типов.
До подачи на вход пульта сигнал микрофона может подвергаться различной обработке (компрессирование, частотная коррекция, в некоторых специальных случаях - реверберация, тональный сдвиг и т.п.) с целью повышения разборчивости речи, выравнивания уровня сигнала и т.д.
Устройства звуковоспроизведения на большинстве станций представлены CD-плейерами и магнитофонами. Спектр используемых магнитофонов зависит от специфики станции: это могут быть цифровые (DAT - цифровой кассетный магнитофон; MD - устройство записи и воспроизведения на цифровой минидиск) и аналоговые устройства (бобинные студийные магнитофоны, а также профессиональные кассетные деки). На некоторых станциях применяется и воспроизведение с виниловых дисков; для этого используются либо профессиональные "грамстолы", либо - чаще - просто высококачественные проигрыватели, а иногда и специальные "диджейские" вертушки, аналогичные используемым в практике дискотек.
На некоторых станциях, где широко применяется принцип ротации песен, используется воспроизведение музыки непосредственно с жесткого диска компьютера, куда определенный набор ротируемых на этой неделе песен записывается предварительно в виде волновых файлов (как правило, в формате WAV). Устройства воспроизведения служебных сигналов применяются самых разных типов. Как и в зарубежном радиовещании, довольно широко используются аналоговые кассетные устройства (джингловоды), носителем звука в которых служит особая кассета с лентой. На каждой кассете, как правило, записывается один сигнал (заставка, джингл, отбивка, подложка и т.п.); лента в кассетах джингловода закольцована, следовательно, сразу после использования она снова готова к воспроизведению. На многих радиостанциях, где используется традиционный тип организациях вещания, сигналы воспроизводятся с бобинных магнитофонов. Цифровые устройства представляют собой либо устройства, где носителем каждого отдельного сигнала являются флоппи-диски или специальные картриджи, либо устройства, где сигналы воспроизводятся непосредственно с жесткого диска компьютера.
В аппаратном комплексе радиовещания используются также различные устройства записи: это могут быть как аналоговые, так и цифровые магнитофоны. Эти устройства применяются как для записи отдельных фрагментов эфира в архив радиостанции или с целью последующего повтора, так и для сплошной контрольной записи всего эфира (так называемый police tape). Кроме того, в аппаратный комплекс радиовещания входят мониторные акустические системы как для прослушивания программного сигнала (микса на выходе с пульта), так и для предварительного прослушивания ("подслушки") сигнала с различных носителей перед выводом этого сигнала в эфир, а также головные телефоны (наушники), в которые подается программный сигнал, и т.п. Частью аппаратного комплекса может являться также устройство RDS (Radio Data System) - система, позволяющая слушателю, обладающему специальным приемным устройством, принимать не только звуковой сигнал, но и текстовый (название радиостанции, иногда - название и исполнитель звучащего произведения, другая инофрмация), отображаемый на специальном дисплее.

Классификация

По чувствительности

· Высокочувствительные

· Среднечувствительные

· Низкочувствительные (контактные)

По динамическому диапазону

· Речевого

· Служебной связи

По направленности

У каждого микрофона есть АЧХ

· Не направленные

· Односторонне направленные

Стационарные

Пятничный

Телестудия

· Специальный свет – освещение в студии

· Звукопоглощающее покрытие под ногами

· Декорации

· Средства связи

· Звукоизолированное помещение для звукорежиссера

· Режиссер

· Видеомониторы

· Контроль звука 1 моно 2 стерео

· Технический персонал

Передвижная ТВ-станция

Передвижная репортажная станция

Видеозаписывающее устройство

Тракт звука

Видео-камера

Тайм-код ТС

Цвет – яркость трех точек красного, зеленого, синего цвета

Четкость, или разрешающая способность

Битрейт – цифровой поток

· Дискретизация 2200 линий

· Квантование

TVL (Ти Ви Лайн)

Вещательная (broadcast)

Линия – единица измерения разрешающей способности

Аналогово-цифровой преобразователь – цифровой

VHS до 300 TVL

Broadcast более 400 TVL

DPI – количество точек на дюйм

Глянец=600 DPI

Фото, портреты=1200 DPI

TV-изображение=72 DPI

Разрешающая способность камеры

Объектив – мегапиксели – качество электр. блока

720 на 568 гб\с

Digital video DV

HD High Definition 1920\1080 – 25мб\с


Самое обсуждаемое
Музыкальный праздник в подготовительной группе ДОУ по сказкам Чуковского Музыкальный праздник в подготовительной группе ДОУ по сказкам Чуковского
Принцип деления Европы на субрегионы Принцип деления Европы на субрегионы
Какие растения растут в пустыне Какие растения растут в пустыне


top